Name \qquad

Summer Algebra I Packet

This packet should help prepare you for Algebra I at Trumbull High School. Please complete these problems before the first day of school.

A TI 84 graphing calculator is required for all math classes at Trumbull High. You may use the calculator for all problems on this packet.

1. Evaluate.
a) $(2+5)^{2}-(3)(9)$
b) $[2-5(14-9)]+2 \div 2$
c) $\frac{2(4-1)^{2}}{5^{2}-9}$
d) $\frac{6^{2}-3^{3}}{4-5(8-4)}$
2. Evaluate $3 x-2 y$ given that $x=3, y=-4$.
3. Evaluate x^{2} given that $x=-5$.

It is important to know the difference between SIMPLIFYING an expression and SOLVING an equation.
Simplifying- no equal sign, need to combine like terms, distribute

4. Simplify the expression. Show all work.
a. $4(x-5)$
e. $3 x+5-6 x+9$
b. $3(x-4)+9$
f. $6 x+9-6 x$
c. $2 x+9 y+8 y-3 x$
g. $4(x+6)-2(x-5)$
d. $14-5(x+6)$
h. $5 x-(7 x+1)+9$

Solving- equal sign, must get variable by itself

$$
\begin{gathered}
9 n-6=5 n+18 \\
-5 n \quad-5 n \\
\hline 4 n-6=\quad 18 \\
+6
\end{gathered}+6
$$

6. Solve the equation. Show all work.
a. $-14 x+5=47$
d. $\frac{x}{3}-5=-2$
b. $50+9 x=11 x+24$
e. $8 m-35=5(m-11)$
c. $\quad 12 x+16=10-3(x-2)$
f. $\frac{x-3}{2}=7$

Solving inequalities is similar to equations. Remember when you multiply or divide by a negative, the inequality sign flips.

$$
\begin{aligned}
-3 x+5 & \leq-16 \\
-5 & -5 \quad \text { subtract } \\
-3 x & \leq-21 \\
\frac{-3 x}{-3} & \geq \frac{-21}{-3} \text { Divide by }-3, \text { reverse inequality } \\
x & \geq 7
\end{aligned}
$$

7. Solve the following inequalities. Show work and graph the solutions on the given number lines.
a. $-5 x-2<13$
b. $4 x+2<-6$

c. $5(x-2)<-15$
d. $x-2<4 x+7$

Slope of a line: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope-intercept form of a line: $y=m x+b \quad m=$ slope $\quad b=y$-intercept
8. Graph the line $y=\frac{1}{2} x-4$

9. Find the slope of the line through $(7,12)$ and $(4,-9)$.
10. Given the line $y=3 x+5$,
a. Identify the slope.
b. Identify the y-intercept
11. Write an equation of a line in slope-intercept form for the lines graphed below.

Equation: \qquad
b.

Equation: \qquad
12. Find the missing side of the triangle using the Pythagorean Theorem.
a.

b.

